# Hierarchical Text Classification using Language Models with Global Label-wise Attention Mechanisms

Jaco du Toit<sup>1,2</sup> and Marcel Dunaiski<sup>1,2</sup>

<sup>1</sup>Computer Science Division, Department of Mathematical Science Stellenbosch University

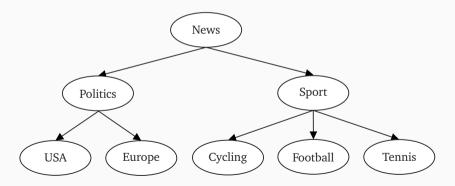
<sup>2</sup>School for Data Science and Computational Thinking Stellenbosch University



forward together sonke siya phambili saam vorentoe

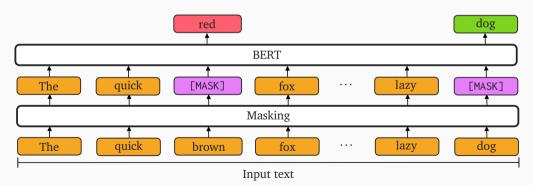
# **Hierarchical Text Classification**

- ▶ Objective: Classify text documents into classes from a structured class hierarchy.
- ▶ Improves organisation and navigation of large document collections.
- ► Allows users to select the level of granularity that they prefer.



# **Transformer-based Language Models**

- ► Trained through self-supervised learning tasks on large amounts of textual data.
- Attention mechanisms obtain contextually and semantically aware word embeddings.
- ▶ BERT: Uses the masked language modelling pre-training task.
- ► RoBERTa: Improved BERT architecture that is trained on more data for longer.



# **Label-wise Attention Mechanisms**

- Label-wise attention mechanisms obtain label-specific document representations of the token representations obtained by the language model.
- ▶ Places more weight on the most important features for each class separately.
- ▶ We use two label-wise attention mechanisms to obtain attention weights:
  - ▶ Dot Product Attention (DPA):

$$\alpha = \operatorname{softmax}(\mathbf{U}_{\mathrm{DPA}}\mathbf{H}^{T}) \tag{1}$$

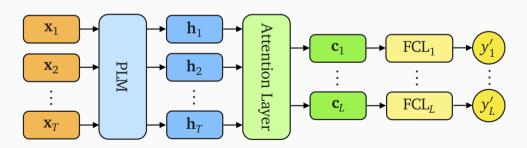
► General Attention (GA):

$$\mathbf{Z} = \tanh(\mathbf{Q}_{GA}\mathbf{H}^T) \tag{2}$$

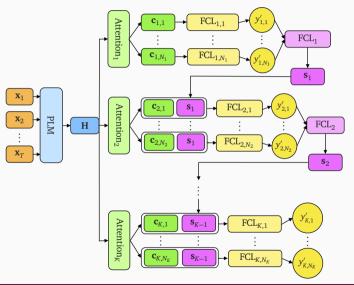
$$\alpha = \operatorname{softmax}(\mathbf{U}_{GA}\mathbf{Z}) \tag{3}$$

#### **Model Architecture**

- ► Text tokens (orange) are passed to the pre-trained language model which obtains representations for each token (blue).
- ► The token representations are used by the label-wise attention mechanism to obtain label-specific document representations (green).
- ► The label-wise document representations are used to obtain the confidence scores for the document belonging to each class (yellow).



# **Hierarchical Model Architecture**



- Hierarchical label-wise attention (HLA): Separates the label-wise attention mechanisms for each level of the class hierarchy.
- ► Output at a level is used to obtain a prediction representation which is concatenated to the lower-level label-wise representations.
- ► Global hierarchical label-wise attention (GHLA): Extends DPA by concatenating all of the higher-level predictions to the label-wise document representations.

# **Experiments**

- ▶ Perform experiments on three hierarchical text classification benchmark datasets:
  - ▶ Web Of Science (WOS): Abstracts of research publications from Web of Science.
  - ► Reuters Corpus Volume 1 Version 2 (RCV1-V2): News articles from Reuters.
  - ▶ New York Times (NYT): News articles from New York Times.

| Dataset | Levels | Classes | Avg. Classes | Train  | Dev   | Test    |
|---------|--------|---------|--------------|--------|-------|---------|
| WOS     | 2      | 141     | 2.0          | 30,070 | 7,518 | 9,397   |
| RCV1-V2 | 4      | 103     | 3.24         | 20,833 | 2,316 | 781,265 |
| NYT     | 8      | 166     | 7.6          | 23,345 | 5,834 | 7,292   |

- ► Evaluation metrics:
  - ► Micro-F1: Averages performance over all testing instances.
  - ► Macro-F1: Equally weighs performance for each class.

# **Main Results**

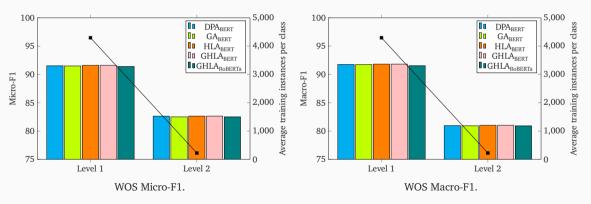
- ► GHLA generally outperforms the other label-wise attention mechanisms.
- ▶ Using RoBERTa significantly improves performance on two datasets.
- Using GHLA with RoBERTa outperforms previously proposed approaches on the RCV1-V2 and NYT datasets.

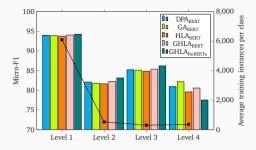
| Model                   | WOS      |          | RCV1-V2  |          | NYT      |          |
|-------------------------|----------|----------|----------|----------|----------|----------|
|                         | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 | Micro-F1 | Macro-F1 |
| HiMatch                 | 86.20    | 80.53    | 84.73    | 64.11    | _        | _        |
| HGCLR                   | 87.11    | 81.20    | 86.49    | 68.31    | 78.86    | 67.96    |
| PAAMHiA-T5 <sup>1</sup> | 90.36    | 81.64    | 87.22    | 70.02    | 77.52    | 65.97    |
| HBGL                    | 87.36    | 82.00    | 87.23    | 71.07    | 80.47    | 70.19    |
| HPT                     | 87.16    | 81.93    | 87.26    | 69.53    | 80.42    | 70.42    |
| DPA <sub>BERT</sub>     | 87.13    | 81.48    | 87.07    | 68.45    | 79.67    | 68.27    |
| $GA_{BERT}$             | 87.05    | 81.46    | 86.88    | 69.11    | 80.06    | 68.56    |
| $HLA_{BERT}$            | 87.17    | 81.55    | 86.71    | 68.45    | 79.60    | 68.06    |
| $GHLA_{BERT}$           | 87.17    | 81.55    | 87.19    | 68.62    | 79.67    | 68.67    |
| $GHLA_{RoBERTa}$        | 87.00    | 81.44    | 87.78    | 70.21    | 81.41    | 72.27    |

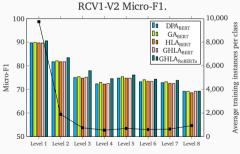
<sup>&</sup>lt;sup>1</sup>Results obtained using twice the number of model parameters as the other approaches.

#### **Level-wise Results**

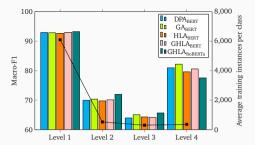
- ▶ We evaluate the classification performance at each level of the class hierarchy separately and determine the correlation with the average number of training instances.
- ► Classification performance generally decreases for the lower levels of the class hierarchy with fewer average training instances per class.

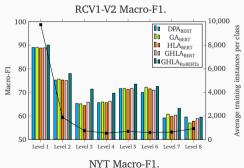






NYT Micro-F1.





# Low-resource Results

- ▶ HLA, DPA, and GHLA perform the best on WOS, RCV1-V2, and NYT respectively.
- ▶ Using RoBERTa significantly improves performance across the three datasets.
- ▶ Macro-F1 scores decrease more than Micro-F1 when using less training data.

| Model                   | WOS                  |                      | RCV1-V2              |                      | NYT                  |                      |
|-------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                         | Micro-F1             | Macro-F1             | Micro-F1             | Macro-F1             | Micro-F1             | Macro-F1             |
| DPA <sub>BERT</sub>     | 79.41 (87.13)        | 67.51 (81.48)        | 82.81 (87.07)        | 52.33 (68.45)        | 72.29 (79.67)        | 49.29 (68.27)        |
| $GA_{BERT}$             | 79.45 (87.05)        | 67.50 (81.46)        | 82.79 (86.88)        | 49.32 (69.11)        | 72.54 (80.06)        | 48.75 (68.56)        |
| $HLA_{BERT}$            | 79.53 (87.17)        | 67.73 (81.55)        | 82.74 (86.71)        | 51.87 (68.45)        | 72.28 (79.60)        | 45.84 (68.06)        |
| $GHLA_{BERT}$           | 78.39 (87.17)        | 67.03 (81.55)        | 82.51 (87.19)        | 50.74 (68.62)        | 72.42 (79.67)        | 50.04 (68.67)        |
| GHLA <sub>RoBERTa</sub> | <b>79.76</b> (87.00) | <b>68.98</b> (81.44) | <b>84.45</b> (87.78) | <b>55.24</b> (70.21) | <b>75.70</b> (81.41) | <b>57.85</b> (72.27) |

# Conclusion

- ▶ Using label-wise attention mechanisms to fine-tune pre-trained language models is an effective approach for hierarchical text classification.
- ▶ Our label-wise attention mechanism effectively leverages the natural language understanding capabilities of the language model and the hierarchical class structure to improve classification performance.
- ► Using RoBERTa as the underlying language model generally improved classification performance over using BERT.
- ► RoBERTa significantly improved low-resource performance.

# Thank you!

Any questions?