Hierarchical Text Classification with Transformer-based Language Models

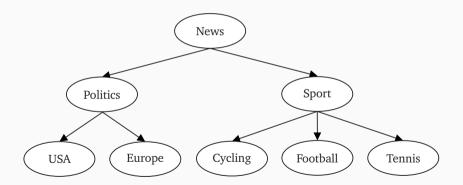
Jaco du Toit

forward together sonke siya phambili saam vorentoe

Supervisor: Marcel Dunaiski

Hierarchical Text Classification

▶ Objective: Classify text documents into a set of classes from a structured class hierarchy.



Introduction | 2 / 35

Motivation and Objectives

► Motivation:

- ► Improves organisation and navigation of documents.
- ► Allows users to select the level of granularity that they prefer.
- ▶ What are the best approaches for incorporating the class hierarchy information?
- Advancements in "flat" text classification have not been investigated for hierarchical text classification (HTC).

Objectives:

- ▶ Identify shortcomings of current approaches and promising unexplored areas of research.
- ► Identify advancements in standard text classification approaches which have not been applied to HTC tasks.
- ▶ Propose new HTC approaches from the identified unexplored areas of research.
- Create new benchmark HTC datasets.

Introduction | 3 / 35

Hierarchical Text Classification Benchmark Datasets

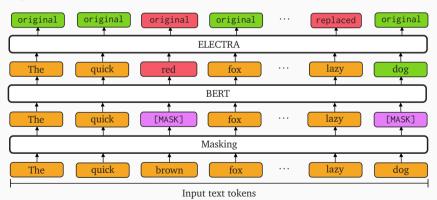
- ▶ Web Of Science (WOS): Abstracts of research publications from Web of Science.
- ► Reuters Corpus Volume 1-Version 2 (RCV1-V2): News articles from Reuters.
- ▶ New York Times (NYT): News articles from New York Times.

Dataset	Levels	Classes	Avg. Classes	Train	Dev	Test
WOS	2	141	2.0	30,070	7,518	9,397
RCV1-V2	4	103	3.24	20,833	2,316	781,265
NYT	8	166	7.6	23,345	5,834	7,292

Introduction | 4 / 35

Transformer-based Language Models

- ► Trained through self-supervised learning tasks on large amounts of textual data.
- ► Attention mechanisms obtain contextually aware word embeddings.
- ► Self-supervised learning tasks:
 - ► Masked language modelling (BERT).
 - ► Replaced token detection (ELECTRA).



Introduction | 5 / 35

Outline

- Four chapters each structured as a paper:
 - ▶ Part 1 Prompt Tuning Discriminative Language Models.
 - ▶ Part 2 Language Models with Label-wise Attention Mechanisms.
 - ► Part 3 Combining Language and Topic Models.
 - ▶ Part 4 Introducing Three New Benchmark Datasets.

Introduction | 6 / 35

Part 1 - Prompt Tuning Discriminative Language Models

► Background:

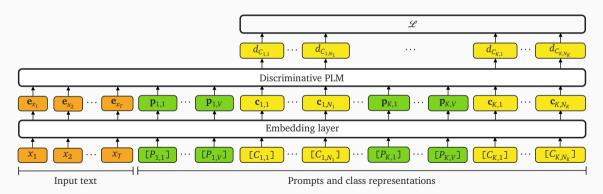
- ► Prompt tuning for text classification.
 - ► "x is about [MASK]"
- ► Hierarchy-aware Prompt Tuning (HPT).
 - ► "x Level 1 class: [MASK] Level 2 class: [MASK]"
- ▶ Prompt Tuning framework for Discriminative PLMs (DPT).
 - ► "x Class: Politics, ···, Sport"

Objectives:

- Combine the HPT and DPT approaches to investigate the efficacy of prompt tuning discriminative language models for hierarchical text classification tasks.
- Propose improvements to DPT.

Model Architecture

► Our approach applies the prompt tuning paradigm to discriminative language models by appending prompts (green) and class representations (yellow) to the text token sequence (orange).



Positional embeddings

- ► Assign the same position IDs to all of the class tokens at a certain level.
- ► Allows the approach to scale to HTC tasks with much larger hierarchical class structures while maintaining many more input text tokens than DPT.

Dataset	Levels	Classes	DPT			HPTD		
			Tokens	%Tokens	Tokens	%Tokens	Additional tokens	
WOS	2	141	369	72.07	508	99.21	+139	
RCV1-V2	4	103	405	79.10	504	98.44	+99	
NYT	8	166	338	66.02	496	96.88	+158	
Ill. Ex.	2	50	460	89.84	508	99.21	+48	
Ill. Ex.	2	200	310	60.54	508	99.21	+198	
Ill. Ex.	2	800	0	0	508	99.21	+798	
Ill. Ex.	8	50	454	88.67	496	96.88	+42	
Ill. Ex.	8	200	304	59.38	496	96.88	+192	
Ill. Ex.	8	800	0	0	496	96.88	+792	

Main Results

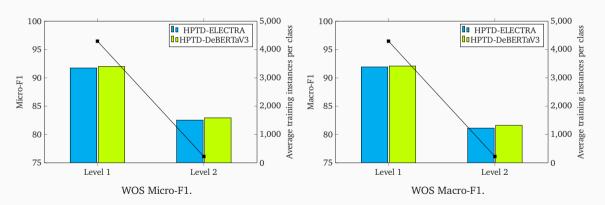
- ▶ We compare two discriminative language models: ELECTRA and DeBERTaV3.
- ► Using DeBERTaV3 model improves performance over ELECTRA on two datasets.
- ▶ Our approach outperforms previously proposed approaches on WOS and NYT.

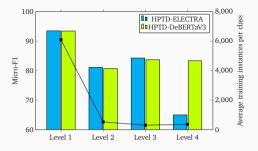
Model	WOS		RCV	RCV1-V2		NYT	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
HiMatch	86.20	80.53	84.73	64.11	_	_	
HGCLR	87.11	81.20	86.49	68.31	78.86	67.96	
PAAMHiA-T5 ¹	90.36	81.64	87.22	70.02	77.52	65.97	
HBGL	87.36	82.00	87.23	71.07	80.47	70.19	
HPT	87.16	81.93	87.26	69.53	80.42	70.42	
HPTD-ELECTRA	87.45	81.67	86.30	68.12	80.54	70.66	
HPTD-DeBERTaV3	87.85	82.13	86.25	66.85	81.45	72.40	

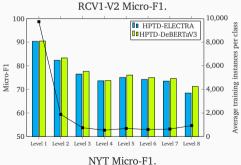
¹Results obtained using twice the number of model parameters as the other approaches.

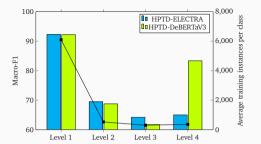
Level-wise Results

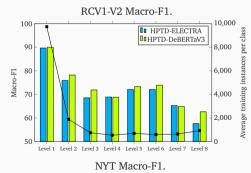
► Classification performance generally decreases for the lower levels of the class hierarchy with fewer average training instances per class.











Part 1 - Prompt Tuning Discriminative Language Models

Low-resource Results

- ▶ Only use 10% of available training data.
- ▶ DeBERTaV3 performs better on the WOS and NYT datasets.
- ▶ Macro-F1 scores decrease more than Micro-F1 when using less training data.

Model	WOS		RCV	RCV1-V2		NYT	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
HPTD-ELECTRA	82.34 (87.45)	74.75 (81.67)	80.98 (86.30)	49.07 (68.12)	75.00 (80.54)	61.28 (70.66)	
HPTD-DeBERTaV3	83.47 (87.85)	75.74 (82.13)	79.42 (86.25)	45.16 (66.85)	76.18 (81.45)	63.38 (72.40)	

Part 2 - Language Models with Label-wise Attention Mechanisms

- ► Background:
 - Label-wise attention mechanisms obtain label-specific document representations from word embeddings.
 - ► We use two label-wise attention mechanisms to obtain attention weights:
 - ► Dot Product Attention (DPA):

$$\alpha = \text{softmax}(\mathbf{U}_{\text{DPA}}\mathbf{H}^T) \tag{1}$$

► General Attention (GA):

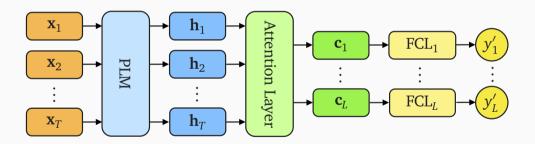
$$\mathbf{Z} = \tanh(\mathbf{Q}_{\mathsf{GA}}\mathbf{H}^T) \tag{2}$$

$$\alpha = \operatorname{softmax}(\mathbf{U}_{GA}\mathbf{Z}) \tag{3}$$

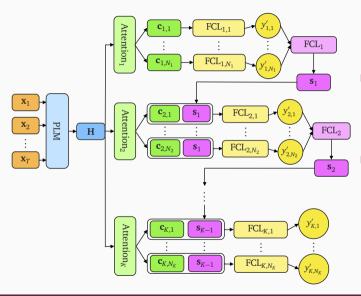
- ► Objectives:
 - ► Investigate efficacy of using label-wise attention mechanisms to fine-tune PLMs for HTC tasks.
 - Comparison of different label-wise attention mechanisms.
 - ▶ Investigate incorporation of hierarchical class structure into label-wise attention mechanisms.

Model Architecture

▶ Our approach uses label-wise attention mechanisms to fine-tune PLMs for HTC tasks.



Hierarchical Model Architecture



- Hierarchical label-wise attention (HLA): Separates the label-wise attention mechanisms for each level of the class hierarchy.
- Global hierarchical label-wise attention (GHLA): Extends HLA by concatenating all of the higher-level prediction representations.

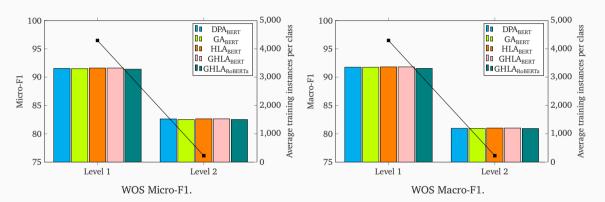
Main Results

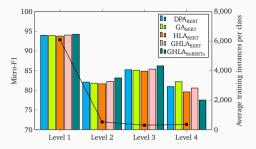
- ► GHLA generally outperforms the other label-wise attention mechanisms.
- ▶ Using RoBERTa significantly improves performance on two datasets.
- ▶ Using GHLA with RoBERTa outperforms other approaches on RCV1-V2 and NYT.

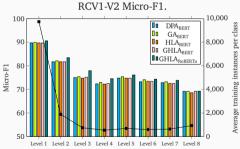
Model	WOS		RCV	RCV1-V2		YT
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
HiMatch	86.20	80.53	84.73	64.11	_	_
HGCLR	87.11	81.20	86.49	68.31	78.86	67.96
PAAMHiA-T5 ¹	90.36	81.64	87.22	70.02	77.52	65.97
HBGL	87.36	82.00	87.23	71.07	80.47	70.19
HPT	87.16	81.93	87.26	69.53	80.42	70.42
DPA _{BERT}	87.13	81.48	87.07	68.45	79.67	68.27
GA_{BERT}	87.05	81.46	86.88	69.11	80.06	68.56
HLA_{BERT}	87.17	81.55	86.71	68.45	79.60	68.06
$GHLA_{BERT}$	87.17	81.55	87.19	68.62	79.67	68.67
$GHLA_{RoBERTa}$	87.00	81.44	87.78	70.21	81.41	72.27

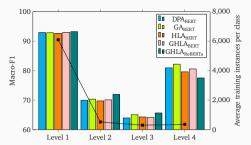
¹Results obtained using twice the number of model parameters as the other approaches.

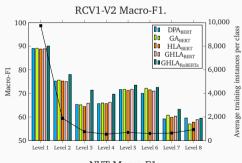
Level-wise Results











NYT Micro-F1.

Low-resource Results

- ► HLA, DPA, and GHLA perform best on WOS, RCV1-V2, and NYT respectively.
- ▶ Using RoBERTa significantly improves performance across the three datasets.

Model	WOS		RCV	1-V2	NYT		
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
DPA _{BERT}	79.41 (87.13)	67.51 (81.48)	82.81 (87.07)	52.33 (68.45)	72.29 (79.67)	49.29 (68.27)	
GA_{BERT}	79.45 (87.05)	67.50 (81.46)	82.79 (86.88)	49.32 (69.11)	72.54 (80.06)	48.75 (68.56)	
HLA_{BERT}	79.53 (87.17)	67.73 (81.55)	82.74 (86.71)	51.87 (68.45)	72.28 (79.60)	45.84 (68.06)	
$GHLA_{BERT}$	78.39 (87.17)	67.03 (81.55)	82.51 (87.19)	50.74 (68.62)	72.42 (79.67)	50.04 (68.67)	
GHLA _{RoBERTa}	79.76 (87.00)	68.98 (81.44)	84.45 (87.78)	55.24 (70.21)	75.70 (81.41)	57.85 (72.27)	

Part 3 - Combining Language and Topic Models

► Background:

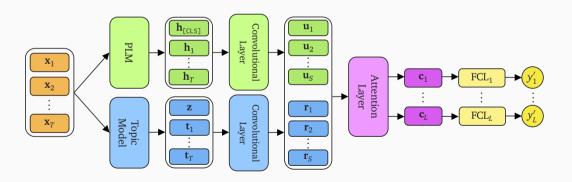
- ► Topic models extract abstract topics from a corpus of documents.
- Previous approaches have shown that combining the features extracted from topic models with language model features improves text classification performance.

Objectives:

- ► Investigate if the combination of these features improves performance on HTC tasks.
- ► Compare the use of these feature extraction approaches to previously proposed approaches which fine-tune PLMs.

Model Architecture

► Our approach uses topic and language models to extract features which passed to a convolutional neural network (CNN) with label-wise attention and classification layers.



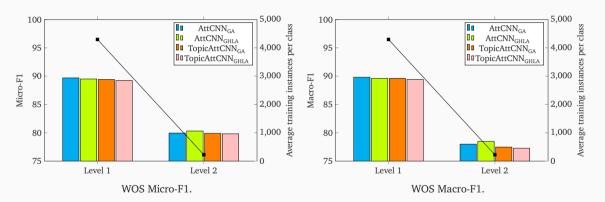
Main Results

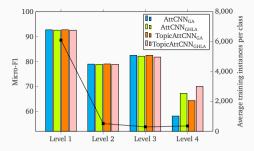
- ► Compare feature combination (TopAttCNN) to only language model features (AttCNN).
- ▶ Using features extracted from the topic model generally decreases performance.
- ► This approach performs significantly worse than previously proposed approaches.

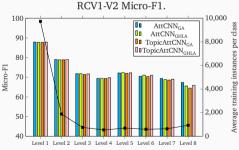
Model	WOS		RCV	′1-V2	NYT	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
HiMatch	86.20	80.53	84.73	64.11	_	_
HGCLR	87.11	81.20	86.49	68.31	78.86	67.96
PAAMHiA-T5 ¹	90.36	81.64	87.22	70.02	77.52	65.97
HBGL	87.36	82.00	87.23	71.07	80.47	70.19
HPT	87.16	81.93	87.26	69.53	80.42	70.42
AttCNN _{GA}	84.93	78.57	84.67	62.48	77.07	64.08
TopAttCNN _{GA}	84.76	78.07	84.72	62.33	76.88	64.18
AttCNN _{GHLA}	85.00	79.02	84.54	63.11	76.94	64.57
TopAttCNN _{GHLA}	84.64	77.86	84.51	60.32	77.08	64.35

¹Results obtained using twice the number of model parameters as the other approaches.

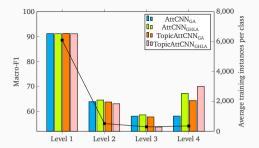
Level-wise Results

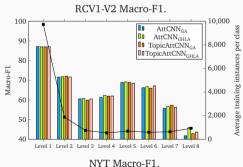






NYT Micro-F1.





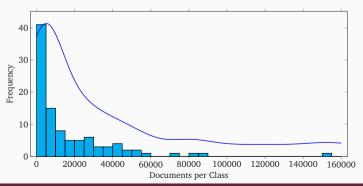
Low-resource Results

► AttCNN_{GHLA} and TopAttCNN_{GA} approaches perform the best on the WOS and NYT datasets respectively.

Model	WOS		RCV	1-V2	NYT		
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
AttCNN _{GA}	75.30 (84.93)	61.76 (78.57)	78.20 (84.67)	46.75 (62.48)	70.80 (77.07)	50.58 (64.08)	
$AttCNN_{GHLA}$	75.49 (85.00)	63.89 (79.02)	78.32 (84.54)	47.44 (63.11)	71.04 (76.94)	50.88 (64.57)	
TopAttCNN _{GA}	72.37 (84.76)	57.52 (78.07)	78.69 (84.72)	46.71 (62.33)	71.18 (76.88)	51.34 (64.18)	
$TopAttCNN_{GHLA}$	73.47 (84.64)	59.99 (77.86)	78.35 (84.51)	45.87 (60.32)	70.58 (77.08)	50.96 (64.35)	

Part 4 - Introducing Three New Benchmark Datasets

- ► Motivation:
 - Only RCV1-V2 is accompanied with a detailed creation methodology.
 - ► Current benchmark datasets are imbalanced.
- ► Objectives:
 - Create three new datasets in the domain of research publications.
 - Evaluate best-performing approaches to provide baseline for future research.



Journal-based classification schema

- ► The Journal Topics (JT) classification schema assigns categories to each journal and classifies a publication based on the journal it is published in.
- ▶ Journal-based classifications have been shown to be unreliable and inaccurate.

Publication	JT _{L1} (6)	JT _{L2} (52)
"Can Creditor Bail-in Trigger Conta-		Business
gion? The Experience of an Emerging	Social Sciences	
Market"		Economics
"Dissecting the genre of Nigerian mu-		Information, computer &
sic with machine learning models.	Natural sciences	communication technologies
Music Information"		
"The complementarity of a diverse		Electrical & electronic
range of deep learning features ex-		engineering
tracted from video content for video	Engineering	
recommendation. Following the pop-		Engineering sciences (other)
ularisation of media streaming, a	Natural sciences	
number of video streaming services		Information, computer &
are"		communication technologies

Citation-based classification schema

- ► The Citation Topics (CT) classification schema clusters publications based on citation relationships such that clusters form distinct classifications.
- ▶ Does not allow publications to belong to multiple research fields.

Publication	CT _{L1} (10)	CT _{L2} (326)	CT _{L3} (2457)
"Can Creditor Bail-in Trigger Contagion? The Experience of an Emerging"	Social Sciences	Economics	Economic Growth
"Dissecting the genre of Nigerian music with machine learning models. Music Information"	Electrical Engineering, Electronics & Computer Science	Knowledge Engineering & Representation	Statistical Tests
"The complementarity of a diverse range of deep learning features extracted from video content for video"	Electrical Engineering, Electronics & Computer Science	Knowledge Engineering & Representation	Collaborative Filtering

Journal Topics Filtered classification schema

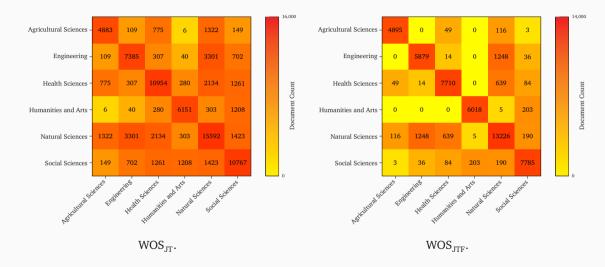
- ▶ We proposed the Journal Topics Filtered (JTF) schema that combines the journal- and citation-based classification schemas to create a new categorisation which leverages their respective advantages.
- \blacktriangleright We used the co-occurrence counts of the JT_{L2} and CT_{L2} classes to map each CT_{L2} class to one or more JT_{L2} classes.
- ▶ We created new class assignments which are formed by removing assignments and categories that do not form clear mappings between the two classification schemas.
- ► The aim of this approach is to increase the probability that an individual document is correctly classified.
- ▶ Our proposed approach also allows documents to belong to multiple classes.

Dataset Creation

- ightharpoonup Randomly sampled 5000 papers from Web Of Science for each of the CT_{L2} classes.
- ▶ WOS_{JT}: Randomly sampled 1000 documents for each JT_{L2} class.
- ► WOS_{CT}: Randomly sampled 200 documents for each CT_{L2} class.
- ightharpoonup WOS_{JTF}: Randomly sampled 1000 documents for each JTF_{L2} class.

Dataset	Levels	$Classes_{L1}$	$Classes_{L2}$	Avg. Classes	Train	Dev	Test
$\overline{\text{WOS}_{\text{JT}}}$	2	6	52	2.93	30,356	6,505	6,505
WOS_{CT}	2	10	326	2.00	45,640	9,780	9,780
WOS_{JTF}	2	6	46	2.25	30,048	6,439	6,439

First-level co-occurrence counts



Classification Results

- ▶ We evaluated our best performing approaches on the three newly created datasets.
- ► GHLA_{ROBERTa} and HPTD-DeBERTaV3 generally outperform the other approaches.
- ► Performance on WOS_{JTF} is significantly better than the other two datasets.

Model	WOS_{JTF}		WC	DS_{JT}	WOS _{CT}	
	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1
HPT	84.97	82.13	67.62	61.71	73.25	61.87
HPTD-ELECTRA	84.75	81.70	67.19	60.91	71.39	58.41
HPTD-DeBERTaV3	85.68	82.93	68.35	62.19	73.45	61.27
GHLA _{RoBERTa}	85.72	82.92	68.38	62.38	73.34	61.29

Conclusion

- ► We proposed three new hierarchical text classification approaches which use the natural language understanding capabilities of pre-trained language models.
- ▶ We showed that the Hierarchy-aware Prompt Tuning for Discriminative PLMs (HPTD) approach effectively leverages the pre-trained knowledge of the language model.
- ▶ We showed that the global hierarchical label-wise attention mechanism (GHLA) uses the hierarchical class structure information to improve classification performance.
- ► We showed that using the features extracted from topic models does not always improve classification performance.
- ▶ We developed three new benchmark datasets in the domain of research publications.

Conclusion | 34 / 35

Thank you!

Any questions?